In this interactive game adapted from the Bigelow Laboratory for Ocean Sciences, ...

In this interactive game adapted from the Bigelow Laboratory for Ocean Sciences, build a food web that illustrates the flow of energy in an Antarctic ecosystem and the relationships between predators and prey.

Brush up on your multiplication, division, and factoring skills with this interactive ...

Brush up on your multiplication, division, and factoring skills with this interactive multiplication chart. Three levels and timed or untimed options are available.

The purpose of this learning video is to show students how to ...

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

The purpose of this learning video is to show students how to ...

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Experiment with a helium balloon, a hot air balloon, or a rigid ...

Experiment with a helium balloon, a hot air balloon, or a rigid sphere filled with different gases. Discover what makes some balloons float and others sink.

Why does a balloon stick to your sweater? Rub a balloon on ...

Why does a balloon stick to your sweater? Rub a balloon on a sweater, then let go of the balloon and it flies over and sticks to the sweater. View the charges in the sweater, balloons, and the wall.

This trick from Exploratorium physicist Paul Doherty lets you add together the ...

This trick from Exploratorium physicist Paul Doherty lets you add together the bounces of two balls and send one ball flying. When we tried this trick on the Exploratorium's exhibit floor, we gathered a crowd of visitors who wanted to know what we were doing. We explained that we were engaged in serious scientific experimentation related to energy transfer. Some of them may have believed us. If you'd like to go into the physical calculations of this phenomenam, see the related resource "Bouncing Balls" - it's the same activity but with the math explained.

Look inside a resistor to see how it works. Increase the battery ...

Look inside a resistor to see how it works. Increase the battery voltage to make more electrons flow though the resistor. Increase the resistance to block the flow of electrons. Watch the current and resistor temperature change.

Look inside a battery to see how it works. Select the battery ...

Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.

This activity explores the main algorithms that are used as the basis ...

This activity explores the main algorithms that are used as the basis for searching on computers, using different variations on the game of battleships. This activity demonstrates three search methods for finding information in data: linear searching, binary searching and hashing. It also includes an optional introductory activity as well as a video showing a fun demonstration related to the same content.

When will objects float and when will they sink? Learn how buoyancy ...

When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.

Draw a graph of any function and see graphs of its derivative ...

Draw a graph of any function and see graphs of its derivative and integral. Don't forget to use the magnify/demagnify controls on the y-axis to adjust the scale.

Draw a graph of any function and see graphs of its derivative ...

Draw a graph of any function and see graphs of its derivative and integral. Don't forget to use the magnify/demagnify controls on the y-axis to adjust the scale.

This learning video uses a simple analog setup to explore why earthquakes ...

This learning video uses a simple analog setup to explore why earthquakes are so unpredictable. The setup is simple enough that students should be able to assemble and operate it on their own with a teacher's supervision. The teaching approach used in this module is known as the 5E approach, which stands for Engagement, Exploration, Explanation, Elaboration, and Evaluation. Over the course of this lesson, the basic mechanisms that give rise to the behavior of the simple analog system are explained, and further elaboration helps the students to apply their understanding of the analog system to complex fault systems that cause earthquakes

This video lesson aims to motivate students about chemistry and to raise ...

This video lesson aims to motivate students about chemistry and to raise their awareness about how chemistry helps in solving certain environmental problems. In this lesson, the air pollution problem created by cars and other vehicles is presented. The lesson will highlight causes of this problem, harmful products from it and possible solutions. There will also be discussion of ways to convert the pollutants produced by burning oil in vehicles into more friendly products.

Move point charges around on the playing field and then view the ...

Move point charges around on the playing field and then view the electric field, voltages, equipotential lines, and more. It's colorful, it's dynamic, it's free.

This new version of the CCK adds capacitors, inductors and AC voltage ...

This new version of the CCK adds capacitors, inductors and AC voltage sources to your toolbox! Now you can graph the current and voltage as a function of time.

Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, ...

Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, and inspect them using lab instruments such as voltmeters and ammeters.

An electronics kit in your computer! Build circuits with resistors, light bulbs, ...

An electronics kit in your computer! Build circuits with resistors, light bulbs, batteries, and switches. Take measurements with the realistic ammeter and voltmeter. View the circuit as a schematic diagram, or switch to a life-like view.

Build circuits with resistors, light bulbs, batteries, and switches and take measurements ...

Build circuits with resistors, light bulbs, batteries, and switches and take measurements with laboratory equipment like the realistic ammeter and voltmeter.

The topic of this video module is how to classify animals based ...

The topic of this video module is how to classify animals based on how closely related they are. The main learning objective is that students will learn how to make phylogenetic trees based on both physical characteristics and on DNA sequence. Students will also learn why the objective and quantitative nature of DNA sequencing is preferable when it come to classifying animals based on how closely related they are. Knowledge prerequisites to this lesson include that students have some understanding of what DNA is and that they have a familiarity with the base-pairing rules and with writing a DNA sequence.

Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct ...

Experiment with conductivity in metals, plastics and photoconductors. See why metals conduct and plastics don't, and why some materials conduct only when you shine a flashlight on them.

In this optics/mathematics activity, learners use two hinged mirrors to create a ...

In this optics/mathematics activity, learners use two hinged mirrors to create a kaleidoscope that shows multiple images of an object. Learners discover that the number of images reflected in the mirrors depends on the angle between the mirrors. Learners also observe that when they set the hinged mirrors on top of a third mirror, they create a reflector that always sends light back in the direction from which it came. Use this activity to introduce basic principles of light and optics including angle of reflection and angle of incidence.

Why do objects like wood float in water? Does it depend on ...

Why do objects like wood float in water? Does it depend on size? Create a custom object to explore the effects of mass and volume on density. Can you discover the relationship? Use the scale to measure the mass of an object, then hold the object under water to measure its volume. Can you identify all the mystery objects?

Scientists who are working to discover new medicines often use robots to ...

Scientists who are working to discover new medicines often use robots to prepare samples of cells, allowing them to test chemicals to identify those that might be used to treat diseases. Students will meet a scientist who works to identify new medicines. She created free software that ''looks'' at images of cells and determines which images show cells that have responded to the potential medicines. Students will learn about how this technology is currently enabling research to identify new antibiotics to treat tuberculosis. Students will complete hands-on activities that demonstrate how new medicines can be discovered using robots and computer software, starring the student as ''the computer.'' In the process, the students learn about experimental design, including positive and negative controls.

Explore tunneling splitting in double well potentials. This classic problem describes many ...

Explore tunneling splitting in double well potentials. This classic problem describes many physical systems, including covalent bonds, Josephson junctions, and two-state systems such as spin 1/2 particles and ammonia molecules.

The Drawing Board consists of a marking pen that remains stationary and ...

The Drawing Board consists of a marking pen that remains stationary and a platform that swings beneath the pen, acting as a pendulum. As the platform swings, the pen marks a sheet of paper that is fastened to the platform, generating beautiful repetitive patterns. These colorful designs contain hidden lessons in physics. This resource includes instructions for making a large-scale Drawing Board as well.

How many calories are in your favorite foods? How much exercise would ...

How many calories are in your favorite foods? How much exercise would you have to do to burn off these calories? What is the relationship between calories and weight? Explore these issues by choosing diet and exercise and keeping an eye on your weight.

Play hockey with electric charges. Place charges on the ice, then hit ...

Play hockey with electric charges. Place charges on the ice, then hit start to try to get the puck in the goal. View the electric field. Trace the puck's motion. Make the game harder by placing walls in front of the goal. This is a clone of the popular simulation of the same name marketed by Physics Academic Software and written by Prof. Ruth Chabay of the Dept of Physics at North Carolina State University.

Play ball! Add charges to the Field of Dreams and see how ...

Play ball! Add charges to the Field of Dreams and see how they react to the electric field. Turn on a background electric field and adjust the direction and magnitude. (Kevin Costner not included).

Learn about conservation of energy with a skater dude! Build tracks, ramps ...

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

In this activity, learners use pattern blocks and mirrors to explore symmetry. ...

In this activity, learners use pattern blocks and mirrors to explore symmetry. Learners work in pairs and build mirror images of each other's designs. In doing so, learners will examine principles of symmetry and reflection.

In this game, learners explore the different sizes of things in the ...

In this game, learners explore the different sizes of things in the world. In this Twister-like game, learners must place a hand or foot on a circle of the right scale - macro, micro, or nano. This activity is a fun way for learners to investigate the sizes of different objects.

In this activity, learners design unique tiles and make repeating patterns to ...

In this activity, learners design unique tiles and make repeating patterns to create tessellations. This activity combines the creativity of an art project with the challenge of solving a puzzle. This lesson features three investigations, in which learners make tessellations by translating, rotating, and reflecting the patterns.

Play with a bar magnet and coils to learn about Faraday's law. ...

Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!

Light a light bulb by waving a magnet. This demonstration of Faraday's ...

Light a light bulb by waving a magnet. This demonstration of Faraday's Law shows you how to reduce your power bill at the expense of your grocery bill.

This lesson unit is intended to help teachers assess how well students ...

This lesson unit is intended to help teachers assess how well students are able to: model a periodic situation, the height of a person on a Ferris wheel, using trigonometric functions; and interpret the constants a, b, c in the formula h = a + b cos ct in terms of the physical situation, where h is the height of the person above the ground and t is the elapsed time.

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.