Updating search results...

Search Resources

44 Results

View
Selected filters:
  • Physics
The Art of Approximation in Science and Engineering: How to Whip Out Answers Quickly
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Subject:
Engineering
Algebra
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Stephen M. Hou
Date Added:
06/02/2015
The Art of Approximation in Science and Engineering: How to Whip Out Answers Quickly
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The purpose of this learning video is to show students how to think more freely about math and science problems. Sometimes getting an approximate answer in a much shorter period of time is well worth the time saved. This video explores techniques for making quick, back-of-the-envelope approximations that are not only surprisingly accurate, but are also illuminating for building intuition in understanding science. This video touches upon 10th-grade level Algebra I and first-year high school physics, but the concepts covered (velocity, distance, mass, etc) are basic enough that science-oriented younger students would understand. If desired, teachers may bring in pendula of various lengths, weights to hang, and a stopwatch to measure period. Examples of in- class exercises for between the video segments include: asking students to estimate 29 x 31 without a calculator or paper and pencil; and asking students how close they can get to a black hole without getting sucked in.

Subject:
Engineering
Algebra
Numbers and Operations
Physics
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
Stephen M. Hou
Date Added:
06/02/2012
"Baseketball"
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This trick from Exploratorium physicist Paul Doherty lets you add together the bounces of two balls and send one ball flying. When we tried this trick on the Exploratorium's exhibit floor, we gathered a crowd of visitors who wanted to know what we were doing. We explained that we were engaged in serious scientific experimentation related to energy transfer. Some of them may have believed us. If you'd like to go into the physical calculations of this phenomenam, see the related resource "Bouncing Balls" - it's the same activity but with the math explained.

Subject:
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Paul Doherty
The Exploratorium
Date Added:
11/07/2012
Battleships
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This activity explores the main algorithms that are used as the basis for searching on computers, using different variations on the game of battleships. This activity demonstrates three search methods for finding information in data: linear searching, binary searching and hashing. It also includes an optional introductory activity as well as a video showing a fun demonstration related to the same content.

Subject:
Computer Science
Engineering
Education
Mathematics
Geometry
Material Type:
Activity/Lab
Game
Lesson Plan
Simulation
Provider:
ComPADRE Digital Library
Author:
Brian Mason Scientific and Technical Trust
Computer Science Unplugged
Google Inc.
Ian Witten
Jane McKenzie
Mike Fellows
Robyn Adams
Tim Bell
Date Added:
01/02/2002
Can Earthquakes Be Predicted?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This learning video uses a simple analog setup to explore why earthquakes are so unpredictable. The setup is simple enough that students should be able to assemble and operate it on their own with a teacher's supervision. The teaching approach used in this module is known as the 5E approach, which stands for Engagement, Exploration, Explanation, Elaboration, and Evaluation. Over the course of this lesson, the basic mechanisms that give rise to the behavior of the simple analog system are explained, and further elaboration helps the students to apply their understanding of the analog system to complex fault systems that cause earthquakes

Subject:
Geology
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Zach Adam
Date Added:
06/11/2012
Catalytic Converter
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0,0 stars

This video lesson aims to motivate students about chemistry and to raise their awareness about how chemistry helps in solving certain environmental problems. In this lesson, the air pollution problem created by cars and other vehicles is presented. The lesson will highlight causes of this problem, harmful products from it and possible solutions. There will also be discussion of ways to convert the pollutants produced by burning oil in vehicles into more friendly products.

الموضوع:
Environmental Science
الكيمياء
نوع المادة:
Lecture
Provider:
MIT
Provider Set:
أزهار معهد ماساتشوستس للتكنولوجيا MIT
المؤلف:
Prof. Mohammad El-Khateeb
Date Added:
06/11/2012
Classifying Animals by Appearance Versus DNA Sequence
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
4.0 stars

The topic of this video module is how to classify animals based on how closely related they are. The main learning objective is that students will learn how to make phylogenetic trees based on both physical characteristics and on DNA sequence. Students will also learn why the objective and quantitative nature of DNA sequencing is preferable when it come to classifying animals based on how closely related they are. Knowledge prerequisites to this lesson include that students have some understanding of what DNA is and that they have a familiarity with the base-pairing rules and with writing a DNA sequence.

Subject:
Biology
Genetics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Megan E. Rokop
Date Added:
06/11/2012
Corner Reflector
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this optics/mathematics activity, learners use two hinged mirrors to create a kaleidoscope that shows multiple images of an object. Learners discover that the number of images reflected in the mirrors depends on the angle between the mirrors. Learners also observe that when they set the hinged mirrors on top of a third mirror, they create a reflector that always sends light back in the direction from which it came. Use this activity to introduce basic principles of light and optics including angle of reflection and angle of incidence.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
12/07/2012
Discovering Medicines, Using Robots and Computers
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Scientists who are working to discover new medicines often use robots to prepare samples of cells, allowing them to test chemicals to identify those that might be used to treat diseases. Students will meet a scientist who works to identify new medicines. She created free software that ''looks'' at images of cells and determines which images show cells that have responded to the potential medicines. Students will learn about how this technology is currently enabling research to identify new antibiotics to treat tuberculosis. Students will complete hands-on activities that demonstrate how new medicines can be discovered using robots and computer software, starring the student as ''the computer.'' In the process, the students learn about experimental design, including positive and negative controls.

Subject:
Biology
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Anne Carpenter
Date Added:
05/07/2015
Drawing Board
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The Drawing Board consists of a marking pen that remains stationary and a platform that swings beneath the pen, acting as a pendulum. As the platform swings, the pen marks a sheet of paper that is fastened to the platform, generating beautiful repetitive patterns. These colorful designs contain hidden lessons in physics. This resource includes instructions for making a large-scale Drawing Board as well.

Subject:
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Provider Set:
Science Snacks
Date Added:
12/07/2012
Experimenting with Symmetry
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners use pattern blocks and mirrors to explore symmetry. Learners work in pairs and build mirror images of each other's designs. In doing so, learners will examine principles of symmetry and reflection.

Subject:
Physics
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Exploratorium
Gordon and Betty Moore Foundation
National Science Foundation
The Exploratorium
Date Added:
12/07/2010
Exploring Size - StretchAbility
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this game, learners explore the different sizes of things in the world. In this Twister-like game, learners must place a hand or foot on a circle of the right scale - macro, micro, or nano. This activity is a fun way for learners to investigate the sizes of different objects.

Subject:
Engineering
Life Science
Mathematics
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Game
Lesson Plan
Reading
Provider:
Nanoscale Informal Science Education Network
Author:
Nanoscale Informal Science Education Network
National Science Foundation
NISE Network
Sciencenter
Date Added:
01/02/2010
Exploring Tessellations (Grades 6-8)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners design unique tiles and make repeating patterns to create tessellations. This activity combines the creativity of an art project with the challenge of solving a puzzle. This lesson features three investigations, in which learners make tessellations by translating, rotating, and reflecting the patterns.

Subject:
Geometry
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Exploratorium
Gordon and Betty Moore Foundation
National Science Foundation
The Exploratorium
Date Added:
12/07/2010
Ferris Wheel
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to: model a periodic situation, the height of a person on a Ferris wheel, using trigonometric functions; and interpret the constants a, b, c in the formula h = a + b cos ct in terms of the physical situation, where h is the height of the person above the ground and t is the elapsed time.

Subject:
Functions
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/26/2013
Free Fall
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video lesson is an example of ''teaching for understanding'' in lieu of providing students with formulas for determining the height of a dropped (or projected) object at any time during its fall. The concept presented here of creating a chart to organize and analyze data collected in a simple experiment is broadly useful. During the classroom breaks in this video, students will enjoy timing objects in free fall and balls rolling down ramps as a way of learning how to carefully conduct experiments and analyze the results. The beauty of this lesson is the simplicity of using only the time it takes for an object dropped from a measured height to strike the ground. There are no math prerequisites for this lesson and no needed supplies, other than a blackboard and chalk. It can be completed in one 50-60-minute classroom period.

Subject:
Physics
Material Type:
Lecture
Provider:
MIT Learning International Networks Consortium
Provider Set:
M.I.T. Blossoms
Author:
John Bookston
Date Added:
06/02/2012
General Chemistry I
Unrestricted Use
CC BY
Rating
0.0 stars

This survey chemistry course is designed to introduce students to the world of chemistry. In this course, we will study chemistry from the ground up, learning the basics of the atom and its behavior. We will apply this knowledge to understand the chemical properties of matter and the changes and reactions that take place in all types of matter. Upon successful completion of this course, students will be able to: Define the general term 'chemistry.' Distinguish between the physical and chemical properties of matter. Distinguish between mixtures and pure substances. Describe the arrangement of the periodic table. Perform mathematical operations involving significant figures. Convert measurements into scientific notation. Explain the law of conservation of mass, the law of definite composition, and the law of multiple proportions. Summarize the essential points of Dalton's atomic theory. Define the term 'atom.' Describe electron configurations. Draw Lewis structures for molecules. Name ionic and covalent compounds using the rules for nomenclature of inorganic compounds. Explain the relationship between enthalpy change and a reaction's tendency to occur. (Chemistry 101; See also: Biology 105. Mechanical Engineering 004)

Subject:
Chemistry
Material Type:
Assessment
Full Course
Homework/Assignment
Lecture
Lecture Notes
Reading
Syllabus
Textbook
Provider:
The Saylor Foundation
Date Added:
11/16/2011
Handy Measuring Ratio
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners use their hands as tools for indirect measurement. Learners explore how to use ratios to calculate the approximate height of something that can't be measured directly by first measuring something that can be directly measured. This activity can also be used to explain how scientists use indirect measurement to determine distances between things in the universe that are too far away, too large or too small to measure directly (i.e. diameter of the moon or number of bacteria in a volume of liquid).

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Exploratorium
Gordon and Betty Moore Foundation
National Science Foundation
The Exploratorium
Date Added:
12/07/2010
I Spy Nano!
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this game, learners try to find nano-related objects on a game board. Learners investigate the different ways nano is in the world around us.

Subject:
Engineering
Education
Life Science
Mathematics
Chemistry
Physics
Material Type:
Activity/Lab
Diagram/Illustration
Game
Reading
Provider:
Nanoscale Informal Science Education Network
Author:
Nanoscale Informal Science Education Network
National Science Foundation
NISE Network
Date Added:
01/02/2011
Inquiry: Using an Egg Drop Activity to Promote Critical Thinking and Analysis Skills
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this hands-on inquiry activity, students will design and construct an apparatus that will permit an egg to survive a nine foot fall. Students are given limited materials, so they must critically think about the design and improvise strategies during the building of the apparatus

Subject:
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Seth Webster
Date Added:
12/09/2011
Mean, Median, Mode, and Range
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help you assess how well students are able to: Calculate the mean, median, mode, and range from a frequency chart; and to use a frequency chart to describe a possible data set, given information on the mean, median, mode, and range.

Subject:
Education
Mathematics
Physics
Material Type:
Activity/Lab
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Author:
Shell Center Team
Date Added:
01/17/2013
Methods for Protein Purification
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This Protein Purification video lesson is intended to give students some insight into the process and tools that scientists and engineers use to explore proteins. It is designed to extend the knowledge of students who are already somewhat sophisticated and who have a good understanding of basic biology. The question that motivates this lesson is, ''what makes two cell types different?'' and this question is posed in several ways. Such scientific reasoning raises the experimental question: how could you study just a subset of specialized proteins that distinguish one cell type from another? Two techniques useful in this regard are considered in the lesson.

Subject:
Biology
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Natalie Kuldell, PhD
Date Added:
06/16/2015
Mission to Mars
Read the Fine Print
Educational Use
Rating
0.0 stars

The Mission to Mars curricular unit introduces students to Mars the Red Planet. Students discover why scientists are so interested in studying this mysterious planet. Many interesting facts about Mars are revealed, and the history of Martian exploration is reviewed. Students will learn about the development of robotics and how robots are beneficial to science, society and the exploration of space. Details on engineers' involvement in space exploration are presented. Furthermore, students will learn how orbits allow astronauts to move from planet to planet and what type of equipment is used by scientists and engineers to safely explore space. Lastly, the specific details on and human risks for a possible future manned mission to Mars (and back to Earth again!) are discussed.

Subject:
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
03/02/2009
Modeling: Rolling Cups
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This lesson unit is intended to help teachers assess how well students are able to: choose appropriate mathematics to solve a non-routine problem; generate useful data by systematically controlling variables; and develop experimental and analytical models of a physical situation.

Subject:
Functions
Geometry
Measurement and Data
Material Type:
Assessment
Lesson Plan
Provider:
Shell Center for Mathematical Education
Provider Set:
Mathematics Assessment Project (MAP)
Date Added:
04/26/2013
Modeling and Simulation for High School Teachers: Principles, Problems, and Lesson Plans
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
5.0 stars

A collaboration between the National Aeronautics and Space Administration (NASA) and the CK-12 Foundation, this book provides high school mathematics and physics teachers with an introduction to the main principles of modeling and simulation used in science and engineering. An appendix of lesson plans is included.

Subject:
Engineering
Physics
Material Type:
Lesson Plan
Teaching/Learning Strategy
Textbook
Provider:
CK-12 Foundation
Provider Set:
CK-12 FlexBook
Date Added:
10/24/2012
Navigating by the Numbers
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students will learn that math is important in navigation and engineering. Ancient land and sea navigators started with the most basic of navigation equations (Speed x Time = Distance). Today, navigational satellites use equations that take into account the relative effects of space and time. However, even these high-tech wonders cannot be built without pure and simple math concepts basic geometry and trigonometry that have been used for thousands of years. In this lesson, these basic concepts are discussed and illustrated in the associated activities.

Subject:
Engineering
Mathematics
Geometry
Trigonometry
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Penny Axelrad
Date Added:
09/18/2014
Phylogenetics
Only Sharing Permitted
CC BY-NC-ND
Rating
0.0 stars

This activity lets learners participate in the process of reconstructing a phylogenetic tree and introduces them to several core bioinformatics concepts, particularly in relation to evolution. Groups of learners (at least 10) repeat a secret message (five to seven similar-sounding words) like the game "Telephone". In this version of the game, however, learners write and then code what they hear, creating a model of a phylogenetic tree and using a species distance matrix. This resource includes background information about phylogenetic trees, maximum parsimony, and matrix theory (see page 6-7 of PDF).

Subject:
Computer Science
Engineering
Information Science
Education
Life Science
Mathematics
Anthropology
Material Type:
Activity/Lab
Game
Lesson Plan
Provider:
ComPADRE Digital Library
Author:
Brian Mason Scientific and Technical Trust
Computer Science Unplugged
Google Inc.
Jim Becker
Katrin Becker
Truman State University
Date Added:
01/02/2005
The Physics of Pool
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The objective of this lesson is to illustrate how a common everyday experience (such as playing pool) can often provide a learning moment. In the example chosen, we use the game of pool to help explain some key concepts of physics. One of these concepts is the conservation of linear momentum since conservation laws play an extremely important role in many aspects of physics. The idea that a certain property of a system is maintained before and after something happens is quite central to many principles in physics and in the pool example, we concentrate on the conservation of linear momentum. The latter half of the video looks at angular momentum and friction, examining why certain objects roll, as opposed to slide. We do this by looking at how striking a ball with a cue stick at different locations produces different effects.

Subject:
Geometry
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Joseph A. Formaggio
Date Added:
06/02/2012
Playground Patterns of Cracks
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this math activity, learners observe and sketch cracking patterns in pavement. Learners use a protractor to measure and label the angles of their sketches and conclude if some angles are more common than others.

Subject:
Geometry
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Exploratorium
Gordon and Betty Moore Foundation
National Science Foundation
The Exploratorium
Date Added:
12/07/2010
Red Rover Robotics
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson will start with a brief history of robotics and explain how robots are beneficial to science and society. The lesson then will explore how robots have been used in recent space exploration efforts. The engineering design of the two Mars rovers, Spirit and Opportunity, will be used as prime examples. Finally, the maneuverability of their robotic arms and the functionality of their tools will be discussed.

Subject:
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
SEC Commons User Guide
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This resource will provide users step by step guidance in using the central features available as part of the SEC Commons. This guide will be updated as new features are added.

If you require further assistance please contact the support team at info@oercommons.org

Subject:
Arts and Humanities
Business and Communication
Mathematics
Social Science
Material Type:
Teaching/Learning Strategy
Author:
Michelle Brennan
Date Added:
01/28/2016
Scaling Cubes
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners explore scale by using building cubes to see how changing the length, width, and height of a three-dimensional object affects its surface area and its volume. Learners build bigger and bigger cubes to understand these scaling relationships.

Subject:
Geometry
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Exploratorium
Gordon and Betty Moore Foundation
National Science Foundation
The Exploratorium
Date Added:
12/07/2010
Single-Variable Calculus I
Unrestricted Use
CC BY
Rating
0.0 stars

This course is designed to introduce the student to the study of Calculus through concrete applications. Upon successful completion of this course, students will be able to: Define and identify functions; Define and identify the domain, range, and graph of a function; Define and identify one-to-one, onto, and linear functions; Analyze and graph transformations of functions, such as shifts and dilations, and compositions of functions; Characterize, compute, and graph inverse functions; Graph and describe exponential and logarithmic functions; Define and calculate limits and one-sided limits; Identify vertical asymptotes; Define continuity and determine whether a function is continuous; State and apply the Intermediate Value Theorem; State the Squeeze Theorem and use it to calculate limits; Calculate limits at infinity and identify horizontal asymptotes; Calculate limits of rational and radical functions; State the epsilon-delta definition of a limit and use it in simple situations to show a limit exists; Draw a diagram to explain the tangent-line problem; State several different versions of the limit definition of the derivative, and use multiple notations for the derivative; Understand the derivative as a rate of change, and give some examples of its application, such as velocity; Calculate simple derivatives using the limit definition; Use the power, product, quotient, and chain rules to calculate derivatives; Use implicit differentiation to find derivatives; Find derivatives of inverse functions; Find derivatives of trigonometric, exponential, logarithmic, and inverse trigonometric functions; Solve problems involving rectilinear motion using derivatives; Solve problems involving related rates; Define local and absolute extrema; Use critical points to find local extrema; Use the first and second derivative tests to find intervals of increase and decrease and to find information about concavity and inflection points; Sketch functions using information from the first and second derivative tests; Use the first and second derivative tests to solve optimization (maximum/minimum value) problems; State and apply Rolle's Theorem and the Mean Value Theorem; Explain the meaning of linear approximations and differentials with a sketch; Use linear approximation to solve problems in applications; State and apply L'Hopital's Rule for indeterminate forms; Explain Newton's method using an illustration; Execute several steps of Newton's method and use it to approximate solutions to a root-finding problem; Define antiderivatives and the indefinite integral; State the properties of the indefinite integral; Relate the definite integral to the initial value problem and the area problem; Set up and calculate a Riemann sum; Estimate the area under a curve numerically using the Midpoint Rule; State the Fundamental Theorem of Calculus and use it to calculate definite integrals; State and apply basic properties of the definite integral; Use substitution to compute definite integrals. (Mathematics 101; See also: Biology 103, Chemistry 003, Computer Science 103, Economics 103, Mechanical Engineering 001)

Subject:
Calculus
Material Type:
Assessment
Full Course
Homework/Assignment
Reading
Syllabus
Textbook
Provider:
The Saylor Foundation
Date Added:
11/11/2011
Stack It Up!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students analyze and begin to design a pyramid. Working in engineering teams, they perform calculations to determine the area of the pyramid base, stone block volumes, and the number of blocks required for their pyramid base. They make a scaled drawing of the pyramid using graph paper.

Subject:
Architecture and Design
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Glen Sirakavit
Gregory Ramsey
Jacquelyn Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
09/26/2008
Stock Swaps, Variation 3
Unrestricted Use
CC BY
Rating
0.0 stars

This is a multi-step problem since it requires more than two steps no matter how it is solved. The problem is not scaffolded for the student, but each step is straightforward and should follow from the previous with a careful reading of the problem.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Stride Ruler
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

In this activity, learners use their feet to estimate distances. Learners calculate the distance of one step in centimeters by measuring 10 steps at a time to reduce measurement error. Learners can use their stride ruler to measure the distance between different points on the playground as an extension activity.

Subject:
Mathematics
Material Type:
Activity/Lab
Provider:
Exploratorium
Author:
Don Rathjen
Exploratorium
Gordon and Betty Moore Foundation
National Science Foundation
The Exploratorium
Date Added:
10/31/2010
String Scientific Notation/Metric System Demonstration
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Short demonstration on scientific notation by asking students to place numbers on a number line using string and notecards.

Subject:
Life Science
Physical Science
Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Pedagogy in Action
Author:
Erin Krueger
Date Added:
08/10/2012
Strong-Arm Tactics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students generally do not know the complexity that goes into building and programming a robotic arm. In actuality, creating such an arm comes from a design that involves mechanical, electrical, and computer science engineers. This activity allows students to control a robotic arm from both a machine's and a computer science engineer's perspective by letting them perform a simple task with a few entertaining instructions and constraints.

Subject:
Computer Science
Engineering
Material Type:
Activity/Lab
Lesson Plan
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Daria Kotys-Schwartz
Geoffrey Hill
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/26/2008
Sustainable Energy: Can Water be the Future Fuel?
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0,0 stars

The main objective of this video lesson is to bring the students' attention to the importance of basic and natural sciences in our lives. The lesson will introduce a topic (sustainable energy) that is related mainly to chemistry and is not usually covered directly in a high school curriculum. We hope that this lesson will show students how important and useful the natural and basic sciences are not only for our daily lives, but also for sustainable development. The lesson will present creative and challenging ideas on the topic of alternative energies. It is hoped that students will be inspired by the introduction of these ideas, and that they will develop the confidence to come up with creative ideas themselves. Background for this lesson is based on fundamental concepts in chemistry (mainly), biology, physics and environmental science.

الموضوع:
Environmental Science
الكيمياء
نوع المادة:
Lecture
Provider:
MIT
Provider Set:
أزهار معهد ماساتشوستس للتكنولوجيا MIT
المؤلف:
Ahmad Al-Ajlouni
Date Added:
05/07/2015