Updating search results...

Search Resources

20 Results

View
Selected filters:
  • Motion
Buoyancy (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Archie Paulson
Carl Wieman
Chris Malley
Jonathan Olson
Kathy Perkins
Kelly Lancaster
Noah Podolefsky
Patricia Loblein
Sam Reid
Wendy Adams
Date Added:
10/01/2010
Energy Skate Park (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Michael Dubson
Patricia Loblein
Sam Reid
Wendy Adams
Date Added:
07/02/2008
Forces and Motion (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Explore the forces at work when you try to push a filing cabinet. Create an applied force and see the resulting friction force and total force acting on the cabinet. Charts show the forces, position, velocity, and acceleration vs. time. View a Free Body Diagram of all the forces (including gravitational and normal forces).

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Noah Podolefsky
Patricia Loblein
Sam Reid
Date Added:
10/01/2010
Friction (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Learn how friction causes a material to heat up and melt. Rub two objects together and they heat up. When one reaches the melting temperature, particles break free as the material melts away. Arabic Language.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Michael Dubson
Mindy Gratny
Wendy Adams
Date Added:
06/02/2008
Gravity Force Lab (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Noah Podolefsky
Patricia Loblein
Sam Reid
Date Added:
02/02/2013
Gravity and Orbits (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Subject:
Astronomy
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily Moore
John Blanco
Jon Olson
Kathy Perkins
Noah Podolefsky
Patricia Loblein
Sam Reid
Date Added:
02/07/2011
Ladybug Revolution (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Join the ladybug in an exploration of rotational motion. Rotate the merry-go-round to change its angle, or choose a constant angular velocity or angular acceleration. Explore how circular motion relates to the bug's x,y position, velocity, and acceleration using vectors or graphs.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
08/02/2011
Lunar Lander
Unrestricted Use
CC BY
Rating
0.0 stars

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.

Subject:
Astronomy
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Date Added:
01/26/2007
Lunar Lander (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Can you avoid the boulder field and land safely, just before your fuel runs out, as Neil Armstrong did in 1969? Our version of this classic video game accurately simulates the real motion of the lunar lander with the correct mass, thrust, fuel consumption rate, and lunar gravity. The real lunar lander is very hard to control.

Subject:
Astronomy
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Date Added:
06/02/2010
Masses & Springs (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
Wendy Adams
Date Added:
08/02/2009
Maze Game
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.

Subject:
Physical Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Mindy Gratny
Sam Reid
Wendy Adams
Date Added:
10/30/2006
Motion in 2D (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Try the new "Ladybug Motion 2D" simulation for the latest updated version. Learn about position, velocity, and acceleration vectors. Move the ball with the mouse or let the simulation move the ball in four types of motion (2 types of linear, simple harmonic, circle).

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Sam Reid
Date Added:
07/02/2009
Moving Man
Unrestricted Use
CC BY
Rating
0.0 stars

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam Reid
Wendy Adams
Date Added:
10/04/2005
My Solar System
Unrestricted Use
CC BY
Rating
0.0 stars

Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.

Subject:
Astronomy
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Michael Dubson
Mindy Gratny
Date Added:
11/15/2007
My Solar System (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.

Subject:
Astronomy
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Danielle Harlow
Michael Dubson
Mindy Gratny
Date Added:
01/02/2011
Pendulum Lab (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Patricia Loblein
Date Added:
07/02/2012
Projectile Motion (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Wendy Adams
Date Added:
06/02/2008
The Ramp (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Woieman
Danielle Harlow
Kathy Perkins
Patricia Loblein
Sam Reid
Wendy Adams
Date Added:
11/02/2009
Torque (AR)
Unrestricted Use
CC BY
Rating
0.0 stars

Investigate how torque causes an object to rotate. Discover the relationships between angular acceleration, moment of inertia, angular momentum and torque.

Subject:
Physics
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Patricia Loblein
Sam Reid
Wendy Adams
Date Added:
02/02/2012
Using Geometry to Design Simple Machines
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This video is meant to be a fun, hands-on session that gets students to think hard about how machines work. It teaches them the connection between the geometry that they study and the kinematics that engineers use -- explaining that kinematics is simply geometry in motion. In this lesson, geometry will be used in a way that students are not used to. Materials necessary for the hands-on activities include two options: pegboard, nails/screws and a small saw; or colored construction paper, thumbtacks and scissors. Some in-class activities for the breaks between the video segments include: exploring the role of geometry in a slider-crank mechanism; determining at which point to locate a joint or bearing in a mechanism; recognizing useful mechanisms in the students' communities that employ the same guided motion they have been studying.

Subject:
Engineering
Education
Mathematics
Geometry
Physics
Material Type:
Lecture
Provider:
MIT
Provider Set:
MIT Blossoms
Author:
Daniel D. Frey
MIT BLOSSOMS
Date Added:
06/02/2012