This trick from Exploratorium physicist Paul Doherty lets you add together the ...
This trick from Exploratorium physicist Paul Doherty lets you add together the bounces of two balls and send one ball flying. When we tried this trick on the Exploratorium's exhibit floor, we gathered a crowd of visitors who wanted to know what we were doing. We explained that we were engaged in serious scientific experimentation related to energy transfer. Some of them may have believed us. If you'd like to go into the physical calculations of this phenomenam, see the related resource "Bouncing Balls" - it's the same activity but with the math explained.
In this activity, learners use pattern blocks and mirrors to explore symmetry. ...
In this activity, learners use pattern blocks and mirrors to explore symmetry. Learners work in pairs and build mirror images of each other's designs. In doing so, learners will examine principles of symmetry and reflection.
In this hands-on inquiry activity, students will design and construct an apparatus ...
In this hands-on inquiry activity, students will design and construct an apparatus that will permit an egg to survive a nine foot fall. Students are given limited materials, so they must critically think about the design and improvise strategies during the building of the apparatus
Build your own system of heavenly bodies and watch the gravitational ballet. ...
Build your own system of heavenly bodies and watch the gravitational ballet. With this orbit simulator, you can set initial positions, velocities, and masses of 2, 3, or 4 bodies, and then see them orbit each other.
In this activity, learners explore scale by using building cubes to see ...
In this activity, learners explore scale by using building cubes to see how changing the length, width, and height of a three-dimensional object affects its surface area and its volume. Learners build bigger and bigger cubes to understand these scaling relationships.
Did you know that you would be a different age if you ...
Did you know that you would be a different age if you lived on Mars? It's true! In this activity, you'll learn about the different rotation and revolution periods of each of the planets and calculate your age respectively. Included is an astronomy history lesson and explanation of Kepler's Laws of Orbital Motion. The activity has a calculator built into the web page, but the activity can be made more math intensive by using the given data to calculate the learner's age by hand.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.